

Road to Additive Manufacturing

Complete Guide to 3D Printing

additive.reiman.pt

Road to Additive Manufacturing

Complete Guide to 3D Printing

additive.reiman.pt

Index

Introduction	p. 4
SLS	———— p. 6
Design Guidelines	
Reference Dimensions	p. 8
Design Considerations	р. 20
Technical Data Sheets	———— p. 26
FDM	p. 30
Design Guidelines	p. 32
Technical Data Sheets	p. 58
SLA	p. 74
Design Guidelines	р. 76
Technical Data Sheets	p. 88

Finishing

Threaded Inserts	p. 104
Surface Treatment	p. 108
Coating	p. 114
Special Applications	р. 118

This catalog contains not only information about RMN ADDITIVE's services but also a set of technical considerations about 3D Printing.

Thus, after the technical introductory section, our range of technologies and finishes is presented, including design guidelines and data sheets.

We make every effort to maintain the accuracy and quality of information provided in this document. However, we cannot guarantee or assume any legal responsibility or liability for the completeness and integrity of the content, especially due to typing or printing errors.

The information presented in this catalog is for general guidance only, and the customer should seek appropriate professional advice, taking into account the specifics of this project.

3 Technologies

+ 60 Machines

+ 200k Parts per year

+ 20 Materials

01. Ideation

Future-oriented development will lead to better products.

02. Development

Technology-independent provider. We work out a forward-driven manufacturing solution providing with the best possible results.

03. Rapid Manufacturing

Combined experience, know-how and a state-of-the-art fleet of machines allow us to significantly reduce the product development cycle and time to market.

O4. From Prototype to Series Production

Our flexible production model allows us to manufacture a wide range of parts, being it a prototype or a series production.

SLS

Selective Laser Sintering

The production of SLS involves sintering a polymeric powder, layer by layer, using one or more lasers. This technology is capable of producing extremely complex parts with great detail.

Robotics

General tooling

And many others

SLS

Design Guidelines Reference Dimensions

Maximum part size

Maximum dimensions considering the production volume. Parts, even within the range shown, must be analyzed due to possible limiting geometric details.

Minimum Diameter/Side (Pillars)

The minimum size of the pillar is the smallest dimension that can be successfully printed. The height of the pillar in relation to its dimension is a variable that must also be controlled in order to prevent this structure from becoming too weak. Therefore, a pillar should not be higher than five times the dimension of the pillar base.

Note: In order to avoid brittle areas when post-processing the parts, at these base-pillar connection locations, add a fillet or a chamfer.

Minimum Diameter/Side (Holes)

Holes with a diameter of less than 1.0 mm may close during printing. The same is true for square holes with sides less than 1.0 mm.

Minimum unsupported walls thickness

The minimum unsupported wall thickness is the minimum thickness required for a wall supported on less than two sides. Walls that are too thin may warp or separate from the model.

Minimum supported walls thickness

The minimum supported wall thickness is the minimum thickness required for a wall supported on two or more sides. Walls that are too thin may warp or separate from the model.

Minimum embossed features

Embossed details are extruded from the faces of the model. Too small embosses can become almost or completely unnoticeable. When this feature is associated with a font (text or numerical elements), use a bold font as it enhances the results.

Minimum engraved features

Engraved details are cuts made from the surface of the model. Details that are too small can become almost or completely unnoticeable. When this cut is associated with a font (text or numerical elements), use a bold font as it enhances the results.

Minimum assembly tolerances

Leave a slight gap between the parts that are printed and that will have some connection between them, such as gaskets or gears.

Integrated assembly tolerances

For parts that will be printed together in an assembly, free space must be left to prevent the parts from merging together.

Escape holes

Closed cavities do not allow the non-sintered powder to be extracted from inside, without exhaust holes. For best results, include at least 2 escape holes in the cavity. These holes should have a diameter of 3.5 mm or more.

Contact area less than or equal to 20 mm² 0,3

0,3 mm

Contact area greater than 20 mm²

0,6 mm

SLS

Design Guidelines Design Considerations

Maintaining uniform thickness

Whenever possible, keep the thickness of the parts relatively consistent. This will alleviate issues related to warping.

Reducing stress concentrations

Parts can experience stress accumulation in areas associated with abrupt cross-section changes, such as thin extrusions from thick bases. Opting for gradual transitions (through fillets or chamfers) significantly reduces stress build-up in these areas.

Controlling dimensional accuracy

Certain parts, due to their geometry, may be more susceptible to warping. In order to mitigate this problem, ribs and/or inclinations should be used so that the dimensional accuracy of the part is guaranteed.

 \mathbf{C}

Technical Data Sheets

EON PA12

This fine powder EON PA12 on the basis of polyamide 12 serves with its very well-balanced property profile a wide variety of applications. Laser-sintered parts made from EON PA12 possess excellent material properties.

Mechanical Properties (1)	Typical Value	Test Method
Izod Impact Notched	32 J/m	ISO 180/1A
Shore D Hardness	75	ISO 868
Tensile Modulus	1850 MPa	
Tensile Strengh	50 MPa	ISO 527-1/-2
Strain at break	20%	
Charpy Impact Strength	53 kJ/m ²	ISO 179/1eU
Charpy Notched Impact Strength	4.8 kJ∕m²	ISO 179/1eA
Flexural Modulus	1600 MPa	ISO 178
Water Absorption (Printed part)	0,70%	ISO 306
Elongation at Break (x/y)	11%	100 537 1
Elongation at Break (z)	6%	150 527-1
Density (laser-sintered)	1.01-1.11	g/cm³

Thermal Properties	Typical Value	Test Method
Vicat Softening Temperature	175 °C	ISO 306
Heat Deflection Temperature (1.80 MPa, 260 psi)	86 °C	100 75 1 / 0
Heat Deflection Temperature (0.45 MPa, 60 psi)	170 °C	150 /5-1/-2

EON PA12-GF

EON PA12-GF powder is a polyamide with a glass-filled polymer. Parts made from this material show significantly increased durability, stiffness, as well as thermal and chemical resistance compared to EON PA12.

Mechanical Properties (1)	Typical Value	Test Method
Izod Impact Notched	3.6 kJ/m ²	ISO 180/1A
Tensile Modulus	2800 MPa	
Tensile Strengh	38 MPa	ISO 527-1/-2
Elongation at Break (x/y)	4.0%	
Charpy Notched Impact Strength	5.4 kJ∕m²	ISO 179/1eA
Flexural Strengh	56 MPa	150 179
Flexural Modulus	2400 MPa	150 178
Density (laser-sintered)	1.18-1.35	g/cm³

Thermal Properties	Typical Value	Test Method
Izod Impact Notched	175 °C	ISO 306
Heat Deflection Temperature (1.80 MPa, 260 psi)	113 °C	
Heat Deflection Temperature (0.45 MPa, 60 psi)	170 °C	ISO /5-1/-2

Other Properties	Typical Value	Test Method
Water Absorption	0.24%	ASTM D570

Notes:

Material properties may vary with part geometry, print orientation and temperature.
Density of printed parts may have slight variations due to water variable absorption rates depending on location and seasonal factors.

FDM

Fused Deposition Modeling

Fused Deposition Modeling (FDM) allows for the production of parts through an extrusion process in which the object is constructed by depositing molten material layer by layer.

Robotics

And many others

Design Guidelines

Minimum part size

Minimum part dimensions. Even within the range shown, they must be analyzed due to possible limiting geometric details.

	Width	Length	Height
EON ABS/ASA			
EON PET			
EON PET ESD-SAFE	16	16	0.0
EON PC-CF	1,0 mm	1,0 mm	0,8 mm
EON PLA			
EON PC			
EON PEKK	2,0 mm	2,0 mm	1,0 mm
EON TPU	4,0 mm	4,0 mm	1,0 mm
EON PA	16 mm	16 mm	0.9 mana
EON PA-CF	1,6 mm	1,6 mm	0,8 mm
EON PA-CF + Continuous Carbon Fiber	9,5 mm	9,5 mm	1,2 mm
EON PA-CF + Continuous Kevlar Fiber	9.5 mm	9.5 mm	0.0 mm
EON PA-CF + Continuous Fiberglass	3,5 mm	3,5 11111	0,9 1111

Maximum part size

Maximum part dimensions. Even within the range shown, they must be analyzed due to possible limiting geometric details.

	Width	Length	Height
EON ABS/ASA	250 mm	200 mm	200 mm
EON PET			
EON PET ESD-SAFE	2E0 mm	250 mm	250 mm
EON PC-CF	350 mm	350 mm	350 mm
EON PLA			
EON PC	250 mm	200 mm	200 mm
EON PEKK	160 mm	160 mm	200 mm
EON TPU			150 mm
EON PA			
EON PA-CF	220 mm	120 mm	
EON PA-CF + Continuous Carbon Fiber	320 1111	130 11111	
EON PA-CF + Continuous Kevlar Fiber			
EON PA-CF + Continuous Fiberglass			

Minimum unsupported walls thickness

The minimum unsupported wall thickness is the minimum thickness required for a wall supported on less than two sides. Walls that are too thin may warp or separate from the model.

Minimum supported walls thickness

Minimum supported wall thickness is the minimum thickness required for a wall supported on two or more sides. Walls that are too thin may warp or separate from the model.

Maximum overhang angle without supports

Overhangs are geometric shapes in a 3D model that extend outside the model and beyond the previous layers. These geometries have no direct support, so they can add problems when printing, but up to a certain inclination, it is possible to materialize them.

	Maximum	Recommended
EON ABS/ASA	55°	50°
EON PET	FO°	٨E°
EON PET ESD-SAFE	50	45
EON PC-CF	45°	40°
EON PLA	55°	50°
EON PC	50°	45°
EON PEKK	45°	40°
EON TPU	40°	35°
EON PA	45°	40°
EON PA-CF		
EON PA-CF + Continuous Carbon Fiber	E E °	40°
EON PA-CF + Continuous Kevlar Fiber	55	
EON PA-CF + Continuous Fiberglass		

Maximum bridge without supports

Bridges, in FDM printing processes, refer to segments where the extruder releases filament over air while moving between two supported positions on the same layer. These displacements, within a range of distances, do not compromise the print, however, beyond a certain distance, the print can have problems associated with these geometric details.

	Maximum	Recommended
EON ABS/ASA	50 mm	40 mm
EON PET	35 mm	30 mm
EON PET ESD-SAFE	40 mm	35 mm
EON PC-CF	45 mm	40 mm
EON PLA	70 mm	60 mm
EON PC	35 mm	30 mm
EON PEKK	15 mm	10 mm
EON TPU		
EON PA		
EON PA-CF	1	1
EON PA-CF + Continuous Carbon Fiber	1 mm	1 mm
EON PA-CF + Continuous Kevlar Fiber		
EON PA-CF + Continuous Fiberglass		

Minimum Diameter/Side (Pillars)

The pillars should not be higher than five times the dimension of the pillar base. Otherwise, they will be more susceptible to cracking along the layers.

	Circular Pillars [Ø]	Square Pillars [l]
EON ABS/ASA	3 mm	3 mm
EON PET	2 mm	4 mm
EON PET ESD-SAFE	511111	411111
EON PC-CF	3 mm	3 mm
EON PLA	3 mm	4 mm
EON PC	3 mm	3 mm
EON PEKK	4 mm	3 mm
EON TPU	4 mm	4 mm
EON PA		
EON PA-CF		
EON PA-CF + Continuous Carbon Fiber	3 mm	3 mm
EON PA-CF + Continuous Kevlar Fiber		
EON PA-CF + Continuous Fiberglass		

Note: In order to avoid brittle areas when post-processing the parts, at these base-pillar connection locations, add a fillet or a chamfer.

Minimum Diameter/Side (Holes)

Too small diameters can cause melting of the deposited material and thus promote hole closure or a poor finish. The same can happen for square holes if their sides are too small.

	Circular Holes [Ø]	Square Holes [l]	
EON ABS/ASA			
EON PET			
EON PET ESD-SAFE			
EON PC-CF	2.0 mm	20 mm	
EON PLA	2,0 mm	2,0 11111	
EON PC			
EON PEKK			
EON TPU			
EON PA			
EON PA-CF			
EON PA-CF + Continuous Carbon Fiber	1,5 mm	1,5 mm	
EON PA-CF + Continuous Kevlar Fiber			
EON PA-CF + Continuous Fiberglass			

Minimum embossed features

The values shown are for all materials referenced here. In cases of horizontal embosses, since the plastic extrusion alone is 0.4 mm, the width of this geometry should be dimensioned with multiples of 0.4 mm.

Minimum engraved features

The values shown are for all materials referenced here. In cases of horizontal engraving, since the plastic extrusion alone is 0.4 mm, the width of the same geometry should be dimensioned with multiples of 0.4 mm.

Embossed details are extruded from the faces of the model. Embosses that are too small may become almost or completely unnoticeable. When associated with a font (text or numerical elements), use a bold font as it enhances the results.

	Depth	Width
A) Horizontal Faces	0,2 mm	0,8 mm
B) Vertical Faces	0,5 mm	0,6 mm

Engraved details are cuts made from the surface of the model. Details that are too small may become almost or completely unnoticeable. When this cut is associated with a font (text or numerical elements), use a bold font as it enhances the results.

Minimum arc diameter

The geometry of an arc can potentialize a zone of possible overhangs depending on the diameter of the arc. Therefore, up to a certain diameter it is possible to execute an arc without running risks. However, beyond a certain diameter, unsupported structures start to enter the arc area, which can affect the print quality.

	Diameter [Ø]
EON ABS/ASA	
EON PET	2 mm
EON PET ESD-SAFE	
EON PC-CF	3 mm
EON PLA	2 mm
EON PC	2 mm
EON PEKK	3 1111
EON TPU	4 mm
EON PA	4 11111
EON PA-CF	
EON PA-CF + Continuous Carbon Fiber	3 mm
EON PA-CF + Continuous Kevlar Fiber	2 11111
EON PA-CF + Continuous Fiberglass	

Minimum area for continuous fiber reinforcement

Note that the minimum area that can be fiber-reinforced is limited to the smallest fiber strand that can be laid and cut. That said, the minimum fiber length is 45 mm.

Minimum width for continuous fiber reinforced zones

Depending on the geometry of the part to be reinforced, some of its zones may or may not allow the deposition of fibers. For this to be possible, some minimum dimensions must be respected.

Minimum height for continuous fiber reinforced areas

In order for a part/zone to be reinforced with continuous fiber, a minimum height must be respected so that sufficient layers are created for fiber deposition to take place.

Technical Data Sheets

EON ABS/ASA

Given its mechanical properties, EON ABS/ASA is ideal for the production for functional prototyping, manufacturing tools, but also for the production of goods for everyday usage including outdoor applications. Its main advantages are its excellent weather resistance, good dimensional stability and low level of yellowing. This material can be used in the production of electrical and electronic equipment. It does not contain the restricted substances. Use of this material in the food or medical industry is not recommended.

Physical Properties	Typical Value	Test Method	Test Condition
Material Density	1,07 g/cm ³	ISO 1183	-
Mechanical Properties (1)	Typical Value	Test Method	Test Condition
Tensile Strength at Yield	40 MPa		
Tensile Modulus	1,6 GPa	ISO 527	-
Elongation at Yield Point	3,3 %		
Impact Strength	40 kJ/m²	150 170	Unnotched
Charpy	14 kJ/m²	150 179	Notched
Hardness	80	ISO 7619	Shore D
Thermal Properties	Typical Value	Test Method	Test Condition
Heat Deflection	93 °C	150.75	0,45 MPa
Temperature	86 °C	150 /5	1,8 MPa

EON PET

EON PET is a plastic with good mechanical properties and medium thermal resistance. Compared to EON PLA, it is more flexible and less brittle. These properties make it a good material for universal use, but it is specially used for mechanical components for indoor use.

Physical Properties	Typical Value	Test Method	Test Condition
Material Density	1,27 g/cm ³	ISO 1183	
Moisture Absorption (7 Days)	0,3 %	-	Lab Test at 30 °C and 30 % RH
Mechanical Properties (1)	Typical Value	Test Method	Test Condition
Tensile Strength at Yield	46 MPa		
Tensile Modulus	1,5 GPa	ISO 527	-
Elongation at Yield Point	5,1 %		
Impact Strength Charpy	No Break	ISO 179	Unnotched, Z Axis
Hardness	76	ISO 7619	Shore D
Thermal Properties	Typical Value	Test Method	Test Condition
Heat Deflection Temperature	68 °C	ISO 75	0,45 MPa

EON PET ESD-SAFE

EON PET ESD-SAFE is an advanced material designed for use in critical applications which require electrostatic discharge (ESD) protection. It is a plastic with good mechanical properties and medium thermal resistance. Compared to EON PLA, it is more flexible and less brittle. The surface resistance of the printed EON PET ESD-SAFE part will vary depending on the printer's extruder temperature. For example, if your testing indicates the part is too insulative, then increasing the extruder temperature will result in improved conductivity. Therefore, the surface resistance can be 'dialed-in' by adjusting the extruder temperature up or down depending on the reading you receive on your part.

	1.00E+13												
	1.00E+12												
	1.00E+11	×											
<u>[</u>]	1.00E+10		\backslash										
ĝ	1.00E+09			×									Б
l S	1.00E+08												D
star	1.00E+07					×		- ×					lan
esi	1.00E+06									×			ge
e R	1.00E+05											×	
fac	1.00E+04												
Sur	1.00E+03												
	1.00E+02												
	1.00E+01												
	1.00E+00												
		230	235	240	245	250	255	260	265	270	275	280	
	Extruder Temperature (°C)												

Physical Properties	Typical Value	Test Method	Test Condition
Material Density	1,28 g/cm ³	ISO 1183	-
Mechanical Properties (1)	Typical Value	Test Method	Test Condition
Tensile Strength	50 MPa		
Tensile Modulus	1800 MPa	100 527	
Tensile Elongation, Break	13 %	150 527	-
Flexural Strength	74 MPa	100 170	
Flexural Modulus	1780 MPa	150 178	
Hardness	76	ISO 7619	Shore D

Thermal Properties	Typical Value	Test Method	Test Condition
Glass Transition Temperature (Tg)	2° 08	DSC	-
Heat Deflection Temperature	75 °C	ISO 75	0,45 MPa
Electrical Properties	Typical Value	Test Method	Test Condition
Surface Resistance	> 107 -109 < Ohm/sq	ISO 1183	-

EON PC

Polycarbonate is a polymer known for its resistance and mechanical durability, toughness and ability to withstand high temperatures. It is therefore used to produce prototypes and functional parts as well as components subject to mechanical and thermal challenges.

Physical Properties	Typical Value	Test Method	Test Condition
Material Density	1,21 g/cm ³	100 1100	-
Melt Flow Index	22 g/10 min	150 1183	265 °C ; 5 Kg
Moisture Absorption 7 Days (%)	0,5 %	-	Lab Test at 23 °C and 40 % RH
Mechanical Properties (1)	Typical Value	Test Method	Test Condition
Tensile Strength at Yield	58 MPa		
Tensile Modulus	1,9 GPa	ISO 527	-
Elongation at Yield Point	5,7 %		
Impact Strength	95 kJ/m²	150 170	Unnotched
Charpy	9 kJ/m²	150 179	Notched
Hardness	79	-	Shore D
Thermal Properties	Typical Value	Test Method	Test Condition
Heat Deflection	113 °C	150.75	0,45 MPa
Temperature	93 °C	150 75	1,80 MPa

EON PC-CF

EON PC-CF has similar printing qualities to EON PC but the addition of the carbon fibers makes it even stronger, more resilient, more temperature resistant and dimensionally stable. Moreover, it also has a nice matte surface which grants a high-quality finish. Compared to other materials, EON PC-CF has good resistance to UV light and common chemicals. In summary, EON PC-CF is ideal for printing mechanical parts and heat-stressed components, for example, various gears and machine parts requiring heat resistance over 100°C.

Physical Properties	Typical Value	Test Method	Test Condition
Material Density	1,16 g/cm ³	150 1102	-
Melt Flow Index	18 g/10 min	150 1183	265 °C ; 5 Kg
Moisture Absorption 7 Days (%)	0,42 %	-	25 °C ; Humidity 23%
Mechanical Properties (1)	Typical Value	Test Method	Test Condition
Tensile Strength at Yield	55 ± 2 MPa		
Tensile Modulus	2,3 ± 0,1 GPa	ISO 527	
Elongation at Yield Point	3,5 ± 0,5 %		-
Flexural Strength	85 ± 1 MPa	100 170	
Flexural Modulus	3,0 ± 0,1 GPa	150 178	
Impact Strength	30 ± 6 kJ/m²	150 170	Unnotched
Charpy	9 ± 1 kJ/m²	150 179	Notched
Hardness	82 D	-	Shore D
Interlayer Adhesion	20 ± 2 MPa	-	-
Thermal Properties	Typical Value	Test Method	Test Condition
Heat Deflection	114 °C	150.75	0,45 MPa
Temperature	106 °C	ISO 75	1,80 MPa

EON PLA

EON PLA is a plastic know for its biodegradability, as well as low thermal expansion. It is used for the fabrication of concept models, prototypes, toys, etc.

Physical Properties	Typical Value	Test Method	Test Condition
Material Density	1,24 g/cm ³	100 1100	
Melt Flow Index	10,4 g/10 min	ISO 1183	220 °C ; 2,16 Kg
Moisture Absorption 7 Days (%)	0,3 %	-	Lab Test at 28 °C and 37 % RH
Mechanical Properties (1)	Typical Value	Test Method	Test Condition
Tensile Strength at Yield	50,8 MPa		
Tensile Modulus	2,2 GPa	ISO 527	-
Elongation at Yield Point	2,9 %		
Impact Strength Charpy	12,7 kJ/m²	ISO 179	Unnotched
Thermal Properties	Typical Value	Test Method	Test Condition
Heat Deflection Temperature	55 °C	ISO 75	0,45 MPa

EON PEKK

PolyEtherKetoneKetone, also known as EON PEKK, is one of the highest-performance polymers in the world. This polymer has outstanding mechanical, thermal, and chemical resistance properties. In addition to these properties, this material is flame resistant according to the UL 94 Standard. As a matter of fact, EON PEKK is very popular in the aerospace and automotive industries, but also in the Oil and Gas industry because of its resistance to pressure and high temperatures.

Physical Properties	Typical Value	Test Method	Test Condition
Material Density	1,29 g/cm ³	ISO 1183	-
Mechanical Properties (1)	Typical Value	Test Method	Test Condition
Tensile Strength at Yield	79,6 MPa		
Tensile Modulus	2,6 GPa	ISO 527	
Elongation at Yield Point	5,9 %		
Flexural Strength	128,5 MPa		
Flexural Modulus	3,0 GPa	150 178	-
Elongation at Máx. Flexural Stress	6,7 %	130 178	
Compression Strength	93,7 MPa	ISO 604	
Elongation	10,10 %		
Hardness	80	ISO 7619	Shore D

Thermal Properties	Typical Value	Test Method	Test Condition
Glass Transition Temperature (Tg)	165 °C		-
Melt Temperature (Tm)	335 °C	DSC	-
Deflection Temperature	182 °C	ISO 75	0,45 MPa (66psi)

EON TPU

EON TPU is an elastomer with rubber-like behavior. The thermoplastic polyurethane offers, due to its characteristics, excellent impact energy absorption properties, making it possible to manufacture flexible and unique parts that can be used in various applications, such as: joints, shock absorbers, protective coatings, and many others.

Physical Properties	Typical Value	Test Method	Test Condition
Material Density	1,2 g/cm ³	ISO 1183	-
Mechanical Properties (1)	Typical Value	Test Method	Test Condition
Tanaila Madulua	98 MPa		At 2% Strain
Tensile Modulus	13 MPa		At 100% Strain
Tensile Stress at Break	26 MPa	ISO 527	
Tensile Strain at Break	500 %		-
Flexural Modulus	90 MPa	ISO 178	
	53	150 7610	Shore D
Haruness	95	120 /019	Shore A

EON PA

EON PA is an engineering thermoplastic that is non-abrasive, ideal for non-scratching parts and great for ergonomic surfaces and workholding for pieces that are easily marred. It offers improved smoothness, great finish, strength and stiffness. EON PA exhibits outstanding abrasion resistance with good flexibility to suit a different range of applications.

Physical Properties	Typical Value	Test Method	Test Condition	
Material Density	1,1 g/cm ³	ISO 1183	-	
Mechanical Properties (1)	Typical Value	Test Method	Test Condition	
Tensile Strength at Yield	51 MPa			
Tensile Modulus	1,7 GPa			
Tensile Strain at Yield	4,5 %	ISO 527		
Tensile Stress at Break	36 MPa		-	
Tensile Strain at Break	150 %			
Flexural Strength	50 MPa	100 179		
Flexural Modulus	1,4 GPa	150 178		
IZOD Impact	110 J/m	ISO 180	Notched	
Hardness	73	ISO 7619	Notened	
Thermal Properties	Typical Value	Test Method	Test Condition	
Heat Deflection Temperature	41 °C	ISO 75	0,45 MPa	

EON PA-CF

EON PA-CF is a high-strength thermoplastic with excellent heat resistance, surface finish and chemical resistance. Chopped carbon fiber is what is mixed into this filament giving it high stiffness and strength. This material is 1.4 times stronger and stiffer than ABS and is perfect for anything from tooling and fixtures to end-use parts.

Physical Properties	Typical Value	Test Method	Test Condition
Material Density	1,2 g/cm ³	ISO 1183	-
Mechanical Properties (1)	Typical Value	Test Method	Test Condition
Tensile Strength at Yield	36 MPa		
Tensile Modulus	1,4 GPa		
Tensile Strain at Yield	25 %	ISO 527	
Tensile Stress at Break	30 MPa	-	-
Tensile Strain at Break	58 %		
Flexural Strength	81 MPa	100 179	
Flexural Modulus	3,6 GPa	150 178	
IZOD Impact	330 J/m	ISO 180	Notched
Hardness	79	ISO 7619	Shore D
Thermal Properties	Typical Value	Test Method	Test Condition

ISO 75

145 °C

EON PA-CF + CFR

EON PA-CF is a high-strength thermoplastic with excellent heat resistance, surface finish and chemical resistance. Chopped carbon fiber is what is mixed into this filament giving it high stiffness and strength. This material is 1.4 times stronger and stiffer than ABS and is perfect for anything from tooling and fixtures to end-use parts and can be stiffened with different continuous fiber reinforcements, depending on each application. It is a versatile material both with and without reinforcing fibers.

Physical Properties	Typical Value	Test Method	Test Condition
Material Density	1,2 g/cm ³	ISO 1183	-
Mechanical Properties (1)	Typical Value	Test Method	Test Condition
Tensile Strength at Yield	36 MPa		
Tensile Modulus	1,4 GPa		
Tensile Strain at Yield	25 %	ISO 527	
Tensile Stress at Break	30 MPa		-
Tensile Strain at Break	58 %		
Flexural Strength	81 MPa	100 170	
Flexural Modulus	3,6 GPa	ISO 178	
IZOD Impact	330 J/m	ISO 180	Notched
Thermal Properties	Typical Value	Test Method	Test Condition
Heat Deflection Temperature	145 °C	ISO 75	0,45 MPa

Heat Deflection

Temperature

0,45 MPa

		F	iber Reinforcemen	t
	Test Method	Carbon	Kevlar®	Fiberglass
Tensile Strength		800 MPa	610 MPa	590 MPa
Tensile Modulus	100 527	60 GPa	27 GPa	21 GPa
Tensile Strain at Break	150 527	1,5 %	2,7 %	3,8 %
Flexural Strength		540 MPa	240 MPa	200 MPa
Flexural Modulus	100 179	51 GPa	26 GPa	22 GPa
Flexural Strain at Break	ISO 178	1,2 %	2,1 %	1,1 %
Compressive Strength		320 MPa	97 MPa	140 MPa
Compressive Modulus	ASTM D 6641	54 GPa	28 GPa	21 GPa
Compressive Strain at Break		0,7 %	1,5 %	-
Heat Deflection Temperature	ISO 75	105 °C	105 °C	105 °C
Izod Impact - Notched	ISO 180	960 J/m	2000 J/m	2600 J/m
Density	-	1,4 g/cm ³	1,2 g/cm ³	1,5 g/cm ³

Flexural Strenght: 240 MPa

Fiberglass Flexural Strenght: 200 MPa

Notes:

1) Test plaques are uniquely designed to maximize test performance. Fiber test plaques are fully filled with unidirectional fiber and printed without walls. Plastic test plaques are printed with full infill.

2) All customer parts should be tested in accordance with customer's specifications. 3) Part and material performance will vary by fiber layout design, part design, specific load conditions, test conditions, build conditions and the like.

4) This representative data was tested, measured, or calculated using standard methods and are subject to change without notice.

5) The data listed here should not be used to establish design, quality control, or specification limits and are not intended to substitute for your own testing to determine suitability for each application.

Carbon Fiber

Flexural Strenght: 540 MPa

SLA

Stereolithography

SLA is a process that uses a high-precision laser to selectively cure a resin, thereby hardening and solidifying it layer by layer.

Robotics

General tooling

And many others

Maximum part size

Maximum dimensions taking into account production volume. Parts, even within the range shown, must be analyzed due to possible limiting geometric details.

Minimum Diameter/Side (Pillars)*

The minimum pillar size is the smallest dimension that can be successfully printed.

	Circular Pillars [Ø]	Square Pillars [l]
Hyperion Grey	0,5 mm	3,0 mm
Hyperion Flex 80A	0,6 mm	3,0 mm
Hyperion Flex 50A	0,8 mm	3,0 mm
Hyperion HT240	0,6 mm	2,0 mm
Hyperion Stiff 4100	0,8 mm	2,5 mm
Hyperion Resistent	0,5 mm	0,5 mm
Hyperion Dura710	0,5 mm	0,6 mm

Note: In order to avoid brittle areas when post-processing the parts, at these base-pillar connection locations, add a fillet or a chamfer.

*Please note that a pillar should not be higher than five times the dimension of the pillar base. Otherwise, they will be more susceptible to shear in layer lines.

	Width	Length	Height
All Materials	145 mm	145 mm	185 mm

Minimum Diameter/Side (Holes)

Holes that are too small can cause melting of the material in the peripheral zone and thus promote hole closure or a poor finish.

	Circular Holes [Ø]	Square Holes [l]	
Hyperion Grey	2,0 mm	2,0 mm	
Hyperion Flex 80A	0.9 mm	0.8 mm	
Hyperion Flex 50A	0,o mm	0,0 mm	
Hyperion HT240	1,0 mm	1,8 mm	
Hyperion Stiff 4100	1,5 mm	1,5 mm	
Hyperion Resistent	1,1 mm	1,1 mm	
Hyperion Dura710	0,5 mm	0,5 mm	

Minimum unsupported walls thickness

The minimum unsupported wall thickness is the minimum thickness required for a wall supported on less than two sides. Walls that are too thin may warp or separate from the model.

Minimum supported walls thickness

A supported wall is connected to other walls on two or more sides. A supported wall smaller than 0.4 mm may deform during the peeling process.

Maximum overnang angle without supports	Maximum	overhang	angle	without	supports
---	---------	----------	-------	---------	----------

Overhangs are geometric shapes in a 3D model that extend outside the model and beyond the previous layers. These geometries have no direct support, so they can add problems when printing, but up to a certain inclination, it is possible to materialize them.

	Thickness		Maximum	Recommended
Hyperion Grey	0,4 mm	Hyperion Grey	70°	55°
Hyperion Flex 80A		Hyperion Flex 80A	70°	60°
Hyperion Flex 50A	0,6 mm	Hyperion Flex 50A	50°	45°
Hyperion HT240		Hyperion HT240	55°	50°
Hyperion Stiff 4100	0.5 mm	Hyperion Stiff 4100	60°	50°
Hyperion Resistent	0,5 mm	Hyperion Resistent	7 0°	60°
Hyperion Dura710	0,4 mm	Hyperion Dura710	70	60

Maximum bridge without supports

Similar to the FDM process, bridges in SLA printing refer to segments/zones of a layer whose only support is located at the edges, and therefore there is a central resin zone that will have to be sintered, with no other layer below providing support.

	Maximum	Recommended	
Hyperion Grey	10 mm	9 mm	
Hyperion Flex 80A	10 11111	911111	
Hyperion Flex 50A	5 mm	4 mm	
Hyperion HT240	15 mm	12 mm	
Hyperion Stiff 4100	18 mm	18 mm	
Hyperion Resistent	22	22	
Hyperion Dura710	22 mm	22 mm	

Minimum embossed features

Embossed details are extruded from the faces of the model. Too small embosses can become almost or completely unnoticeable. When this feature is associated with a font (text or numerical elements), use a bold font as it enhances the results.

Note: The values shown in this table provide depth and witdh measures for both horizontal and vertical faces.

Minimum engraved features

Engraved details are cuts made from the surface of the model. Details that are too small can become almost or completely unnoticeable. When this cut is associated with a font (text or numerical elements), use a bold font as it enhances the results.

Note: The values shown in this table provide depth and witdh measures for both horizontal and vertical faces.

Minimum arc diameter

The geometry of an arc can potentialize a zone of possible overhangs depending on the diameter of the arc. Therefore, up to a certain diameter it is possible to execute an arc without running risks. However, beyond a certain diameter, unsupported structures start to enter the arc area, which can affect the print quality.

Hyperion Grey

Physical Properties	Typical Value	Test Method	Test Condition
Material Density	1,08 g/cm ³	-	
Mechanical Properties (1)	Typical Value	Test Method	Test Condition
Ultimate Tensile Strength	65 MPa		
Tensile Modulus	2,80 GPa	ASTM D 638-10	
Elongation at Break	6,2 %		-
Flexural Modulus	2,20 GPa	ASTM C 790-10	
Notched IZOD	25 J/m	ASTM D 256-10	
Thermal Properties	Typical Value	Test Method	Test Condition
Heat Deflection	58,4 °C		1,80 MPa
Temperature	73,1 °C	ASTM D 648-07	0,45 MPa

Solvent	24 Hour Weight Gain	Solvent	24 Hour Weight Gain
Acetic Acid 5%	<1%	Hydrogen Peroxide (3 %)	
Acetone	Sample Cracked	Isooctane	
Isopropyl Alcohol		Mineral Oil, Light	
Bleach, ~5 % NaOCI		Mineral Oil, Heavy	
Butyl Acetate	<1%	Salt Water (3,5 % NaCl)	<1%
Diesel		Sodium Hydroxide (0,025 % pH = 10)	
Diethyl Glycol Monomethyl Ether	1,70 %	Water	
Hydrolic Oil	<1%	Xylene	
Skydrol 5	1%	Strong Acid (HCl Conc)	Distorted

Solvent Compatibility: Percent weight gain over 24 hours for a printed and post-cured 1 x1x1 cm cube immersed in respective solvent:

Notes:

1) Tests plaques are designed to maximize test performance. Test plaques are printed with full infill. All customer parts should be tested in accordance with customer's specifications. Material properties can vary with part geometry, print orientation, print settings and temperature.

2) Data was obtained from parts printed using SLA Machine, 100 μm and post-cured with a Curing Machine for 120 minutes at 80 $^\circ C.$

Hyperion Flex 80A

Physical Properties	Typical Value	Test Method	Test Condition
Material Density	1,06 g/cm ³		-
Mechanical Properties (1)	Typical Value	Test Method	Test Condition
Ultimate Tensile Strength	8,9 MPa		
Stress at 50 % Elongation	3,1 MPa	ASTM D 412-06 (A)	
Stress at 100 % Elongation	6,3 MPa		
Elongation at Break	120 %		-
Shore Hardness	80A	ASTM 2240	
Compression Set (23 °C for 22 hours)	3%	ASTM D 624-00	
Compression Set (70 °C for 22 hours)	5 %	ASTM D 395-03 (B)	
Tear Strength	24 kN/m		
Ross Flex Fatigue at 23 °C	> 200,000 cycles	ASTM D 1052	Notched ;
Ross Flex Fatigue at -10 °C	> 50,000 cycles	ASTM D 1052	100 cycles/min
Bayshore Resilience	28 %	ASTM D 2632	-

Thermal Properties	Typical Value	Test Method	Test Condition
Glass Transition Temperature (Tg)	27 °C	DMA	-

Solvent	24 Hour Weight Gain	Solvent	24 Hour Weight Gain
Acetic Acid 5%	0,9 %	Hydrogen Peroxide (3 %)	0,7 %
Acetone	37,4 %	Isooctane	1,6 %
Isopropyl Alcohol	11,7 %	Mineral Oil, Light	0,1 %
Bleach, ~5 % NaOCI	0,6 %	Mineral Oil, Heavy	< 0,1 %
Butyl Acetate	51,4 %	Salt Water (3,5 % NaCl)	0,5 %
Diesel	2,3 %	Sodium Hydroxide (0,025 % pH = 10)	0,6 %
Diethyl Glycol Monomethyl Ether	19,3 %	Water	0,7 %
Hydrolic Oil	1,0 %	Xylene	64,1 %
Skydrol 5	10,7 %	Strong Acid (HCl Conc)	28,6 %
Tripropylene Glycol Methyl Ether	13,6 %	-	-

Solvent Compatibility: Percent weight gain over 24 hours for a printed and post-cured 1 x1x1 cm cube immersed in respective solvent:

Notes:

1) Tests plaques are designed to maximize test performance. Test plaques are printed with full infill. All customer parts should be tested in accordance with customer's specifications. Material properties can vary with part geometry, print orientation, print settings and temperature.

2) Data was obtained from parts printed using SLA Machine, 100 μm and post-cured with a Curing Machine for 120 minutes at 80 $^\circ C.$

Hyperion Flex 50A

Physical Properties	Typical Value	Test Method	Test Condition
Material Density	1,02 g/cm ³	-	-
Mechanical Properties (1)	Typical Value	Test Method	Test Condition
Ultimate Tensile Strength	3,23 MPa		
Stress at 50 % Elongation	0,94 MPa	ASTM D 412-06 (A)	
Stress at 100 % Elongation	1,59 MPa		
Elongation at Break	160 %		-
Shore Hardness	50A	ASTM 2240	
Compression Set (23 °C for 22 hours)	2%	ASTM D 395-03 (B)	
Compression Set (70 °C for 22 hours)	9 %		
Tear Strength	19,1 kN/m	ASTM D 624-00	

Solvent	24 Hour Weight Gain	Solvent	24 Hour Weight Gain
Acetic Acid 5%	2,8 %	Hydrogen Peroxide (3 %)	2,2 %
Acetone	37,3 %	Isooctane	3,5 %
Isopropyl Alcohol	25,6 %	Mineral Oil, Light	.19/
Bleach, ~5 % NaOCI	2 %	Mineral Oil, Heavy	< 1 %
Butyl Acetate	39,6 %	Salt Water (3,5 % NaCl)	1,7 %
Diesel	4,2 %	Sodium Hydroxide (0,025 % pH = 10)	2 %
Diethyl Glycol Monomethyl Ether	28,6 %	Water	2,3 %
Hydrolic Oil	2,1 %	Xylene	46,6 %
Skydrol 5	21,7 %	Strong Acid (HCI Conc)	39,4 %

Solvent Compatibility: Percent weight gain over 24 hours for a printed and post-cured 1 x1x1 cm cube immersed in respective solvent:

Notes:

1) Tests plaques are designed to maximize test performance. Test plaques are printed with full infill. All customer parts should be tested in accordance with customer's specifications. Material properties can vary with part geometry, print orientation, print settings and temperature.

2) Data was obtained from parts printed using SLA Machine, 100 μm and post-cured with a Curing Machine for 120 minutes at 80 $^\circ C.$

Hyperion HT240

Solvent 24 Hour Weight Gain Solvent 24 Hour Weight Gain Hydrogen Peroxide Acetic Acid 5% (3 %) Acetone Isooctane Isopropyl Alcohol Mineral Oil, Light Bleach. ~5 % NaOCI Mineral Oil, Heavy Salt Water Butyl Acetate (3.5 % NaCI) <1% <1% Sodium Hydroxide Diesel (0,025 % pH = 10) Diethyl Glycol Water Monomethyl Ether Hydrolic Oil Xylene Strong Acid Skydrol 5 1,2 % (HCI Conc)

Typical Value

Thermal Properties	Post-Cured (2)	Post-Cured + Thermally Post-Cured (3)	Test Method	Test Condition
Heat Deflection	99,2 °C	101 °C	ACTM D 649 16	1,80 MPa
Temperature	142 °C	238 °C	ASTM D 048-10	0,45 MPa
Thermal Expansion	79,6 µm∕m∕°C	74 µm∕m∕°C	ASTM E 831-13	-

Solvent Compatibility: Percent weight gain over 24 hours for a printed and post-cured 1 x 1 x 1 cm cube immersed in respective solvent:

Notes:

1) Tests plaques are designed to maximize test performance. Test plaques are printed with full infill. All customer parts should be tested in accordance with customer's specifications. Material properties can vary with part geometry, print orientation, print settings and temperature.

2) Data was obtained from parts printed using SLA Machine, 100 μm and post-cured with a Curing Machine for 120 minutes at 80 °C.

Hyperion Stiff 4100

Physical Properties	Typical Value	Test Method	Test Condition
Material Density	1,26 g/cm ³	-	-
Mashauiaal			
Properties (1)	Typical Value	Test Method	Test Condition
Ultimate Tensile Strength	69 MPa		
Tensile Modulus	4,10 GPa	ASTM D 638-14	
Elongation at Break	5,3 %		-
Flexural Strength	105 MPa	ASTM D 700 15	
Flexural Modulus	3,40 GPa	ASTM D 790-15	
Notched IZOD	23 J/m	ASTM D 256-10	
Thermal Properties	Typical Value	Test Method	Test Condition
Heat Deflection	0° 00		1,80 MPa
Temperature	77 °C	ASTM D 648-16	0,45 MPa
Thermal Expansion	63 µm/m/°C	ASTM E 831-13	-

Solvent	24 Hour Weight Gain	Solvent	24 Hour Weight Gain
Acetic Acid 5%	0,8 %	Hydrogen Peroxide (3 %)	0,87 %
Acetone	3,3 %	Isooctane	< 0,1 %
Isopropyl Alcohol	0,38 %	Mineral Oil, Light	0,22 %
Bleach, ~5 % NaOCI	0,69 %	Mineral Oil, Heavy	0,15 %
Butyl Acetate	01%	Salt Water (3,5 % NaCl)	0,71 %
Diesel	< 0,1 %	Sodium Hydroxide (0,025 % pH = 10)	0,68 %
Diethyl Glycol Monomethyl Ether	1,4 %	Water	0,70 %
Hydrolic Oil	0,17 %	Xylene	< 0,1 %
Skydrol 5	1,1 %	Strong Acid (HCl Conc)	5,3 %

Solvent Compatibility: Percent weight gain over 24 hours for a printed and post-cured 1 x1x1 cm cube immersed in respective solvent:

Notes:

1) Tests plaques are designed to maximize test performance. Test plaques are printed with full infill. All customer parts should be tested in accordance with customer's specifications. Material properties can vary with part geometry, print orientation, print settings and temperature.

2) Data was obtained from parts printed using SLA Machine, 100 μm and post-cured with a Curing Machine for 120 minutes at 80 $^\circ C.$

Hyperion Resistent

Physical Properties	Typical Value	Test Method	Test Condition
Material Density	1,07 g/cm ³	-	-
Mechanical Properties (1)	Typical Value	Test Method	Test Condition
Ultimate Tensile Strength	33 MPa		
Tensile Modulus	1,50 GPa	ASTM D 638-14	
Elongation at Break	51 %		
Flexural Strength	39 MPa	ACTM D 700 15	-
Flexural Modulus	1,40 GPa	ASTM D 790-15	
Notched IZOD	67 J/m	ASTM D 256-10	
Unnotched IZOD	1387 J/m	ASTM D 4812-11	
Thermal Properties	Typical Value	Test Method	Test Condition
Heat Deflection	45 °C		1,80 MPa
Temperature	52 °C	ASTM D 048-16	0,45 MPa
Thermal Expansion	97 µm∕m∕°C	ASTM E 831-13	-

Solvent	24 Hour Weight Gain	Solvent	24 Hour Weight Gain
Acetic Acid 5%	0,75 %	Hydrogen Peroxide (3 %)	0,71 %
Acetone	19,07 %	Isooctane	0,02 %
Isopropyl Alcohol	3,15 %	Mineral Oil, Light	0,05 %
Bleach, ~5 % NaOCI	0,62 %	Mineral Oil, Heavy	0,09 %
Butyl Acetate	5,05 %	Salt Water (3,5 % NaCl)	0,66 %
Diesel	0,11 %	Sodium Hydroxide (0,025 % pH = 10)	0,70 %
Diethyl Glycol Monomethyl Ether	5,25 %	Water	0,69 %
Hydrolic Oil	0,17 %	Xylene	3,22 %
Skydrol 5	0,46 %	Strong Acid (HCl Conc)	4,39 %

Solvent Compatibility: Percent weight gain over 24 hours for a printed and post-cured 1 x1x1 cm cube immersed in respective solvent:

Notes:

1) Tests plaques are designed to maximize test performance. Test plaques are printed with full infill. All customer parts should be tested in accordance with customer's specifications. Material properties can vary with part geometry, print orientation, print settings and temperature.

2) Data was obtained from parts printed using SLA Machine, 100 μm and post-cured with a Curing Machine for 120 minutes at 80 $^\circ C.$

Hyperion Dura 710

Physical Properties	Typical Value	Test Method	Test Condition
Material Density	1,07 g/cm ³	-	-
Mechanical Properties (1)	Typical Value	Test Method	Test Condition
Ultimate Tensile Strength	28 MPa		
Tensile Modulus	1,0 GPa	ASTM D 638-14	
Elongation at Break	55 %		
Flexural Strength	24 MPa	ACTM D 700 17	-
Flexural Modulus	0,66 GPa	ASTM D 790-17	
Notched IZOD	114 J/m	ASTM D 256-10 (2018)	
Unnotched IZOD	710 J/m	ASTM D 4812-11	
Hardness	73	ISO 7619	Shore D

Solvent	24 Hour Weight Gain	Solvent	24 Hour Weight Gain	
Acetic Acid 5%	1,3 %	Hydrogen Peroxide (3 %)	1%	
Acetone	Sample Cracked	Isooctane		
Isopropyl Alcohol	5,1 %	Mineral Oil, Light		
Bleach, ~5 % NaOCI	<1%	Mineral Oil, Heavy		
Butyl Acetate	7,9 %	Salt Water (3,5 % NaCl)	<1%	
Diesel	<1%	Sodium Hydroxide (0,025 % pH = 10)		
Diethyl Glycol Monomethyl Ether	7,8 %	Water		
Hydrolic Oil	<1%	Xylene	6,5 %	
Skydrol 5	1,3 %	Strong Acid (HCl Conc)	Distorted	

Thermal Properties	Typical Value	Test Method	Test Condition
Heat Deflection Temperature	41 °C	ASTM D 648-18	Method B at 0,45 MPa
Thermal Expansion	106 µm/m/°C	ASTM E 831-14	-

Solvent Compatibility: Percent weight gain over 24 hours for a printed and post-cured 1 x1x1 cm cube immersed in respective solvent:

Notes:

1) Tests plaques are designed to maximize test performance. Test plaques are printed with full infill. All customer parts should be tested in accordance with customer's specifications. Material properties can vary with part geometry, print orientation, print settings and temperature.

2) Data was obtained from parts printed using SLA Machine, 100 μm and post-cured with a Curing Machine for 120 minutes at 80 $^\circ C.$

3) Data was obtained from parts printed using SLA Machine, 100 μ m and post-cured with a Curing Machine for 120 minutes at 80 °C plus an additional thermal cure in a lab oven for 180 minutes at 160 °C.

Finishing

Threaded Inserts

Heat staking

Heat Staking is a process that uses heat to join threaded inserts to already printed parts that need to have a threaded connection. This is a fast process and ensures that there is a consistent thread on the part, thus allowing the part to have a longer life span. To perform this process, the insert is preheated through induction and then pressed against the location where it will be housed.

Geometric Considerations

In order for the insert to be properly placed, some geometric rules that ensure correct coupling must be respected. These standards can be seen in the following table:

	A [Ø]	В	С	D
M2×4,0	3,2 mm	1,3 mm	4,0 mm	1,0 mm
M2×2,5	3,0 mm	1,3 mm	2,7 mm	1,0 mm
M3×5,8	4,1 mm	1,6 mm	5,8 mm	1,0 mm
M3×4,0	4,1 mm	2,3 mm	5,0 mm	1,0 mm
M4×8,2	5,7 mm	2,1 mm	8,2 mm	1,0 mm
M5×9,6	6,5 mm	2,6 mm	9,6 mm	1,0 mm
M6×12,8	8,1 mm	3,3 mm	12,8 mm	1,0 mm
M8×12,9	9,7 mm	4,5 mm	12,8 mm	1,0 mm
M10×13,7	11,7 mm	4 mm	13,7 mm	1,0 mm

Finishing

Surface Treatment

Polishing

Machining process applied through vibratory finishing equipment. Proprietary recipes of media, paste and liquid are applied to achieve a delicate high-quality finish on AM parts.

Blasting

Mechanical surface treatment of parts by the action of abrasives. In-house developed recipes of media allow an effective smoothing or cleaning of AM parts.

Before

Before

After

Vapor Smoothing

Surface treatment process that requires the management of temperature, pressure and specific solvents. Evenly smooths all kinds of surfaces on AM parts.

Available for: EON ABS/ASA, EON PA12.

Before

After

Before

After

Finishing

Coating

Dyeing

Coloring process through the penetration of dye in the parts that allows to long-lasting, UV-stable coloring.

Available colors: Black Available for: EON PA12, EON PA12GF

Coating that allows to achieve high-quality results, offering multiple surface finish options like matte, semi-gloss or glossy.

Available colors*: • RAL9005, • RAL3000, • RAL9003, • RAL6018, • RAL5005 Available for: All, except flexible or rubber-like materials.

*Other colors on request.

Before

After

Finishing

Special Applications

Laser Engraving

Manufacturing process for marking of objects using a laser.

Sterilization

Steam sterilization in autoclave for thermoresistant devices. Sterilization cycle according to ISO 17665 overkill approach, Minimum 134°C for 5'. EtO sterilization in chemical chamber for thermoresistant and thermosensitive devices. Sterilization cycle according to ISO 11135, 21kg +/- 2 kg EtO, 4h exposure (final product whitin residual EtO <2ppm).

REIMAN, LDA.

(+351) 22 961 80 90

comercial@reiman.pt additive@reiman.pt

Rua Manuel Sousa Marques, Arm. 1 4475-482 Maia, Portugal